EEG gamma frequency and sleep-wake scoring in mice: comparing two types of supervised classifiers.

نویسندگان

  • Jurij Brankack
  • Valeriy I Kukushka
  • Alexei L Vyssotski
  • Andreas Draguhn
چکیده

There is growing interest in sleep research and increasing demand for screening of circadian rhythms in genetically modified animals. This requires reliable sleep stage scoring programs. Present solutions suffer, however, from the lack of flexible adaptation to experimental conditions and unreliable selection of stage-discriminating variables. EEG was recorded in freely moving C57BL/6 mice and different sets of frequency variables were used for analysis. Parameters included conventional power spectral density functions as well as period-amplitude analysis. Manual staging was compared with the performance of two different supervised classifiers, linear discriminant analysis (LDA) and Classification Tree. Gamma activity was particularly high during REM (rapid eye movements) sleep and waking. Four out of 73 variables were most effective for sleep-wake stage separation: amplitudes of upper gamma-, delta- and upper theta-frequency bands and neck muscle EMG. Using small sets of training data, LDA produced better results than Classification Tree or a conventional threshold formula. Changing epoch duration (4 to 10s) had only minor effects on performance with 8 to 10s yielding the best results. Gamma and upper theta activity during REM sleep is particularly useful for sleep-wake stage separation. Linear discriminant analysis performs best in supervised automatic staging procedures. Reliable semi-automatic sleep scoring with LDA substantially reduces analysis time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Acute and Chronic Heat Exposure on Frequency of EEG Components in Different Sleep-Wake State in Young Rats

The recent literatures indicate that central nervous system (CNS) is highly vulnerable to systemic hyperthermia induced by whole body heating on conscious animals. In the present study, cerebral electrical activity or EEG (electroencephalogram) following exposure to high environmental heat has been studied in moving rats. Rats were divided into three group (i) acute heat stress-subjected to a s...

متن کامل

SegWay: A simple framework for unsupervised sleep segmentation in experimental EEG recordings

Sleep analysis in animal models typically involves recording an electroencephalogram (EEG) and electromyogram (EMG) and scoring vigilance state in brief epochs of data as Wake, REM (rapid eye movement sleep) or NREM (non-REM) either manually or using a computer algorithm. Computerized methods usually estimate features from each epoch like the spectral power associated with distinctive cortical ...

متن کامل

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Sleep scoring made easy—Semi-automated sleep analysis software and manual rescoring tools for basic sleep research in mice

Studying sleep behavior in animal models demands clear separation of vigilance states. Pure manual scoring is time-consuming and commercial scoring software is costly. We present a LabVIEW-based, semi-automated scoring routine using recorded EEG and EMG signals. This scoring routine is •designed to reliably assign the vigilance/sleep states wakefulness (WAKE), non-rapid eye movement sleep (NREM...

متن کامل

Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography

A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1322  شماره 

صفحات  -

تاریخ انتشار 2010